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Abstract
Current methods of automated speech-based cognitive as-

sessment often rely on fixed-picture descriptions in major lan-
guages, limiting repeatability, engagement, and locality. This
paper introduces HK-GenSpeech (HKGS), a framework using
generative AI to create pictures that present similar features to
those used in cognitive assessment, augmented with descriptors
reflecting the local context. We demonstrate HKGS through
a dataset of 423 Cantonese speech samples collected in Hong
Kong from 141 participants, with HK-MoCA scores ranging
from 11 to 30. Each participant described the cookie theft pic-
ture, an HKGS fixed image, and an HKGS dynamic image. Re-
gression experiments show comparable accuracy for all image
types, indicating HKGS’ adequacy in generating relevant as-
sessment images. Lexical analysis further suggests that HKGS
images elicit richer speech. By mitigating learning effects and
improving engagement, HKGS supports broader data collec-
tion, particularly in low-resource settings.
Index Terms: Dementia detection, Speech-based cognitive as-
sessment, Generative AI for healthcare

1. Introduction
Dementia is a progressive neurodegenerative disorder affecting
an ageing population. While incurable, early diagnosis enables
interventions that can improve patients’ quality of life. Lin-
guistic and acoustic biomarkers provide a non-invasive, cost-
effective means of detection [1]. Initiatives like the ADReSS
and ADReSSo challenges provide standardised datasets and
tasks, using audio from the Boston Diagnostic Aphasia Exam-
ination Cookie Theft Picture (CTP) description task [2, 3, 4].
More recently, the ADRESS-M and TAUKADIAL challenge
[5, 6] expanded efforts to multilingual approaches, emphasising
linguistic diversity with other picture description tasks. How-
ever, most datasets still rely on fixed scenes, potentially limiting
speech variability. Besides, under-represented languages, such
as Cantonese, remain largely unaddressed, despite advance-
ments in multilingual and trans-lingual methods [7, 5]. Genera-
tive AI, though under-explored in dementia detection, presents
an opportunity to diversify stimuli and enhance engagement by
tailoring assessments that relate to local populations [8, 9].

This work introduces HK-GenSpeech (HKGS), a genera-
tive AI-based picture description framework for dementia de-
tection that extends speech-based assessment beyond the CTP.
The proposed framework employs a multi-stage pipeline to gen-
erate culturally adaptable and task-relevant scenes that elicit
speech responses for predicting continuous HK-MoCA [10]
scores. Compared to datasets like ADReSS (156 samples)[2]
and ADReSSo (237 samples)[3], which rely on the CTP, HKGS
uses dynamically generated scenes. This approach prevents

memorisation in repeated tests and can adapt to the cultural and
linguistic context of Cantonese-speaking participants in Hong
Kong. Notably, it enables using multiple scenes per participant
to increase the diversity of the dataset, which may be beneficial
when recruiting additional participants poses a challenge.

To validate this approach, we used HKGS to collect a
dataset of Cantonese speech samples from 141 community-
dwelling participants in Hong Kong, aged 55–94, with HK-
MoCA scores ranging from 11 to 30. Each participant pro-
vided three samples: (1) CTP description, (2) a fixed HKGS
AI-generated picture, and (3) a dynamic HKGS AI-generated
picture. All three conditions yielded similar results, with MAE
values between 3.84 and 4.14, demonstrating the adequacy of
HKGS AI-generated images in eliciting meaningful speech for
cognitive assessment. Predictions remained consistent across
conditions, indicating improved repeatability. A model incor-
porating all three samples per participant marginally outper-
formed individual models, suggesting that HKGS can augment
data when participant numbers are limited.

2. The HKGS Framework
The HKGS framework follows three primary goals:

1. Continuous Score Prediction: The framework targets pre-
dicting continuous HK-MoCA scores rather than binary clas-
sification, for finer distinctions in cognitive performance, es-
pecially in Mild Cognitive Impairment (MCI) and dementia.

2. Improved Test Repeatability: Dynamically generated
scenes mitigate the risk of learning effect and reduce bore-
dom, improving repeatability for longitudinal studies.

3. Cultural Relevance: Generating scenes that relate to the lo-
cal culture to better reflect the participants’ environment, im-
proving comfort, engagement, and inclusivity.

HKGS relies on an image generation pipeline that converts
textual and visual cues into AI-generated scenes as shown in
Figure 1. The pipeline first distils the meaningful features of the
CTP into guidelines, which are used to generate unique images.

2.1. Image Feature Extraction and Guideline Derivation

The CTP is efficient in cognitive assessment by stimulating the
visuospatial capabilities of the subject through a detailed scene
that elicits narrative descriptions in a familiar setting. HKGS
replicates such characteristics in AI-generated pictures. First,
we use GPT-4o [11] vision capabilities to generate text descrip-
tions that capture the central events, background context, and
relational dynamics of the CTP. We then refine the generated de-
scription by passing Cummings’ [12] paper describing regions
of interest in the CTP for speech-based assessments, along with
the text descriptors to further distil the CTP into a set of im-



Figure 1: Image generation pipeline. The core features of the
CTP are first extracted and augmented with culturally relevant
descriptors to generate prompts for creating AI-generated im-
ages.

age design principles. Finally, we instructed GPT4o to convert
these guidelines into a guiding prompt for a secondary LLM to
create the image generation prompts.

2.2. Design Principles for Diagnostic Image Generation

From the previous step, we extract a set of distilled design prin-
ciples mainly based on Cumming’s work[12]:
D1 Salience of Information – The image should feature a cen-

tral, easily recognisable event, with background elements
providing context without distraction.

D2 Semantic Categories – A variety of animate and inanimate
entities should be included, allowing for descriptions that
use both general and specific terms.

D3 Referential Cohesion – Multiple characters and objects
should be present, requiring clear referential identification
through pronouns and anaphoric references.

D4 Causal and Temporal Relations – The scene should imply
logical event sequences and causal relationships.

D5 Mental State Language – Characters should exhibit emo-
tions or intentions requiring inferential language.

D6 Structural Language and Speech – The composition
should encourage diverse syntactic structures, supporting
both simple and complex sentences.

D7 General Cognition and Perception – The layout should
be balanced while promoting attention to detail.
HKGS adheres to these guidelines to generate images that

elicit meaningful responses for cognitive assessment. Fig. 3
presents the control image generated using these design prin-
ciples. It features a family playing chess (D1), with diverse
animate and inanimate entities, including family members and
household objects (D2, D3). Characters’ interactions imply a
logical sequence of actions, and various relationships (D3,D4),
requiring complex sentences to describe (D6), while their facial
expressions and body language convey diverse emotions and in-
tentions, including pride, surprise, and worry (D5). The scene
presents a broad story while featuring many small details, such
as items on the bookshelves and characters out of the view (D7).

2.3. The Image Generation Pipeline

HKGS uses the guidelines in subsection 2.2 in a multi-stage
image generation pipeline as follows:

Table 1: Summary Statistics Speech-Based Cognitive Assess-
ment Datasets

Dataset Lang. Pic. Task # Sam-
ples/Part.

Cogn.
Test

HK-
GenSpeech

Cantonese CTP (Baseline),
GC, GU 423/141 HK-

MoCA
ADReSS[2] English CTP 156/156 MMSE
ADReSSo[3] English CTP + Fluency

Task
237/237 MMSE

+ AD
TAUKA-
DIAL[16]

English,
Mandarin

3 Pic. (Eng.)
3 Pic. (Mand.) 507/169 MoCA

+ MCI

ADReSS-
M[6]

English,
Greek

CTP (English),
1 Pic. (Greek)

225/225
(English)
46/46
(Greek)

MMSE
+ AD

Figure 2: Sample pictures from the HKGS accompanying
dataset

1. Augmenting Prompt Descriptors The guiding prompt cre-
ated by GPT-4o in subsection 2.1 is first augmented with cul-
turally and task-relevant modifiers (e.g., ”Generate an image
generation prompt in a single paragraph format, do not ex-
plain anything”, “set in Asia”, “animation style”) to adapt
the scene to the local population.

2. Refining Scene Prompts: A Llama 3.1-8B model [13, 14],
chosen for its strong performance given its size and ability to
be run locally at minimal cost, takes in the augmented prompt
and generates dynamic prompts tailored to image generation
tools. Paired with a random seed, this step ensures that the
generated scene descriptions are unique with every run, yet
remain consistent in appearance and adherence to the guide-
lines in subsection 2.2.

3. Image Synthesis: The final prompts are fed into a workflow
using Flux.1 Dev [15] to create the scene images. Each im-
age is then assigned a unique ID to facilitate tracking and
association to the recipient participant during analysis.

Fig. 2 shows some of the scenes generated by this pipeline.

2.4. Data Collection, Dataset and Task Design

We use the images generated in subsection 2.3 to collect a
dataset of Cantonese-language image descriptions. The study
involved 141 community-dwelling, Cantonese-speaking partic-
ipants recruited from seven common gathering places for older



Figure 3: Gen-Control(GC) Task - Example of an image created
using the HKGS design principles

adults in Hong Kong (community centres, day centres, and
churches) via convenience sampling. Differences in cogni-
tive function were observed across sites, with church partic-
ipants presenting higher HK-MoCA scores, possibly due to
the degree of autonomy and cognition required to participate
in such activities [17, 18]. Participants were aged 55 to 94
(75.73 ± 8.67), 38 males and 103 females, with self-reported
education levels ranging from no formal schooling1 to master’s
degree (6.39 ± 3.89 years). Their assessed HK-MoCA scores
range between 11 and 30 (21.1 ± 5.53). Participants were re-
quired to have good eyesight with or without correction, be able
to speak fluent Cantonese, and be able to hear and understand
spoken instructions. The total duration of all samples is 7h 38m
with an average length of 1m 56s.

The interviews were conducted indoors in a one-to-one set-
ting. Participants were first informed of the study’s procedure,
goals, and outcomes before providing written consent. They
then completed the HK-MoCA test, administered by a pool of
researchers. Following the test, participants moved to a sep-
arate room for speech description recordings after a brief in-
termission. During this session, they viewed and verbally de-
scribed three images (all images were manually screened for
major anatomical errors, and fewer than 8% required replace-
ment) in a predetermined order to ensure dataset consistency.

1. Baseline (CTP): The original, static Cookie Theft Picture
serving as a reference.

2. Gen-Control (GC): A standardised AI-generated image pro-
duced using the framework for control testing. (See Fig. 3)

3. Gen-Unique (GU): A unique, dynamically generated image
assigned randomly to each participant.

Participants were asked to ”tell the researcher everything
they saw in the picture”. The three pictures were presented
sequentially, mirroring the protocols of the ADReSS and
ADReSSo datasets [2, 3]. The protocol was approved by the
university’s IRB and we followed typical guidelines for gather-
ing consent and conducting design activities with people with
MCI or dementia [19, 20].

3. Evaluation

This section evaluates the application of HKGS in speech-based
cognitive assessments by comparing models trained on the CTP,
GC, and GU datasets.

1 13% of interviewed participants did not receive any form of edu-
cation, due to historical factors in the region in the mid-20th century.

Figure 4: Wav2Vec2 HK-MoCA Predictor Model Diagram

Table 2: Performance Metrics for Speech Assessment Models

Wav2Vec2 + Neural Network Regressor
Model MAE RMSE R2 Pearson R Bias % Within 1-pt
CTP 3.87 4.63 0.30 0.55 0.57 12.77%
GC 4.14 5.19 0.11 0.47 1.83 16.43%
GU 3.84 4.76 0.25 0.53 0.56 14.89%
Combined 3.64 4.67 0.28 0.57 1.03 19.87%

eGeMAPs V2 + Support Vector Regressor
CTP 4.56 5.30 0.04 0.23 0.66 8.25%
GC 4.29 5.13 0.07 0.31 0.86 10.90%
GU 4.29 5.22 0.07 0.32 0.94 12.73%
Combined 4.15 4.95 0.16 0.42 0.69 11.23%

3.1. Experiment Setup

3.1.1. Dataset Preparation and Audio Preprocessing

The CTP, GC, and GU datasets each contain an equal number
of samples—one per participant per set—to ensure a consis-
tent evaluation across tasks. Stratified five-fold cross-validation
(CV) was applied, with training and validation splits generated
using the same seed (42) to maintain consistency.

For each sample, we first filter the background noise with
DeepFilterNet [21]. The samples were then imported into Au-
dacity [22] to truncate silent regions to a maximum of 0.75 sec-
onds, as some samples contained extended periods of silence
[23]. Next, samples were labelled as Interviewer, Participant,
or Irrelevant – Irrelevant being used as a catch-all category
for sections unrelated to the picture description task. Regions
labelled as Interviewer or Irrelevant were removed. Samples
were normalised in amplitude and exported as 16-bit mono-
channel .wav files with a sample rate of 16 KHz. Each audio
sample was then divided into 15-second chunks. Any chunks
shorter than 10 seconds were discarded.

3.1.2. Model Architecture and Training Setup

We developed a regression model using a fine-tuned Cantonese
Wav2Vec2 model [21, 24] as the backbone. The model extracts
embeddings from the preprocessed audio from Section 3.1,
which are then mean-pooled and fed into a dense network. The
dense network consists of two layers with 64 neurons each,
ReLU activation, and a dropout rate of 0.3. The final output
layer comprises a single neuron. The model was trained to min-
imise the mean squared error (MSE) loss (see Fig. 4).

Four models were trained: one for each task-specific dataset
(CTP, GC, GU) and one using all available data, stratified by
participant. The models were trained with a learning rate of
5 × 10−4 and a batch size of 8. Each model was trained up to
20 epochs per CV split, with early stopping applied after three
epochs of patience, using ”Eval MAE” to determine the best-
performing model. For comparison, we also trained baseline
regression models using eGeMAPS V2 features in combination
with an SVR, as established in previous work [2, 3].

3.2. Experiment Results

3.2.1. Prediction Performance

From Table 2 baseline models using eGeMAPSv2 features with
an SVR are outperformed by our approach, confirming its ef-



Figure 5: KDE Plot Comparing Model Prediction Errors. The
combined training approach results in the highest proportion of
predictions within 1 point of the ground truth.

Table 3: Summary of Linguistic Metrics

Model TTR POS Div. Con. WR Lex. Den. Avg. UL

CTP 0.135 0.648 0.480 0.670 5.99
GC 0.142 0.654 0.480 0.640 6.09
GU 0.165 0.657 0.470 0.660 5.91

TTR: Type-Token Ratio. POS Div.: Part-of-Speech Diversity.
Con. WR: Content Word Ratio. Lex. Den.: Lexical Density. Avg.
UL: Average Utterance Length.

fectiveness. Wav2Vec2 models trained on AI-generated images
perform comparably to those trained on the CTP for predicting
HK-MoCA scores. A naive baseline always predicting the mean
(21.1) yields an MAE of 4.57 and an RMSE of 5.51. By con-
trast, the GU model achieves an MAE of 3.84 and an RMSE of
4.76—close to the CTP (MAE = 3.87, RMSE = 4.63)—whereas
the GC model produces higher errors (MAE = 4.14, RMSE =
5.19), possibly due to greater variability with static images.

Repeated measures ANOVA indicates a significant effect
of the split/task condition (F(2,278) = 18.24, p <0.001). How-
ever, Tukey post hoc comparisons revealed no significant dif-
ference between CTP and GU (mean difference = 0.00, p =
1.000). Both differ significantly from GC (mean difference =
1.24, p = 0.0027). The combined dataset achieves the lowest
MAE (3.64), a competitive RMSE (4.67), and the highest Pear-
son’s R (0.57) and R2 (0.28), predicting scores within one point
in nearly 20% of cases (under 13% for CTP alone). These find-
ings suggest that broader linguistic diversity can enhance gen-
eralisation without compromising performance.

3.2.2. Linguistic Analysis

Performance differences across tasks may stem from subtle lin-
guistic variations in elicited speech. As shown in Table 3, GU
responses have a higher TTR (0.165) and slightly greater POS
diversity (0.657) than CTP (0.135 and 0.648, respectively), sug-
gesting more varied lexical usage and additional cues for pre-
dicting cognitive performance. In contrast, CTP responses ex-
hibit a slightly higher content word ratio (0.480) and lexical
density (0.670), suggesting more focused content.

Average utterance length is consistent across conditions ( 6
words), suggesting that qualitative rather than quantitative dif-
ferences in speech drive the observed effects. Although en-
gagement was not directly measured, linguistic differences and
noun usage patterns (e.g., ”thing” (東西) in CTP vs. ”child”
(孩子) in GC and GU) suggest greater spontaneity in the latter.
These modest lexical diversity differences may contribute to the
model’s predictive performance.

3.2.3. Bias and Accuracy Metrics

According to Table 2, bias analysis shows relatively low mean
bias error (MBE) across models. The GU model (MBE 0.56)
aligns closely with the CTP (MBE 0.57), whereas GC exhibits
a higher bias (MBE 1.83), possibly due to the systematic influ-
ence of the static AI-generated image. The combined model,
with an MBE of 1.03, remains within acceptable range and
achieves the highest percentage of predictions within 1 point
of the ground truth (19.87%), followed by GC (16.43%), GU
(14.89%) and CTP (12.77%). This suggests that combined
training effectively balances bias reduction and precision, ben-
efiting from exposure to a broader range of linguistic patterns.

3.3. Discussion

We summarise the main findings and opportunities of HKGS,
and discuss some limitations.
Adequacy for cognitive assessment: Images generated with
HKGS yield HK-MoCA prediction scores comparable to the
reference CTP descriptions. For most subjects, average pair-
wise differences remain below 2.5 points, demonstrating that
HKGS adequately replicates the CTP features that elicit speech
suitable for cognitive assessment.
Engagement and cultural relatability: During data collec-
tion, several participants misinterpreted the CTP, especially the
scene outside the window, due to its rarity in Hong Kong. The
adult woman was often seen as a domestic worker, reflecting
local societal contexts. Participants were more engaged with
the GC and GU scenes, leading to better scene recognition and
more spontaneous descriptions. Linguistic analysis supports
this observation, showing greater lexical variety in AI scenes.
Repeatability and Data Diversity: With dynamic image gen-
eration, HKGS prevents participants from memorising their re-
sponses, mitigating learning effects. This enables the collection
of multiple samples over a single session. Training on all sam-
ples improves performance, suggesting that the prediction ben-
efits from the increased lexical diversity and that the approach
can function as data augmentation in low-resource settings. As
such, it opens new opportunities from collecting data on under-
represented populations to conducting longitudinal studies.
Data bias: While the generated images can adapt to local con-
texts, their effectiveness is limited by the diversity of the train-
ing data of image generation models. Certain cultural or de-
mographic contexts are typically under-represented, leading the
generated scenes not to authentically reflect those experiences.
For instance, we noted a low number of variations among char-
acters’ appearances when representing East Asian populations.

4. Conclusion
This work introduces the HKGS framework, enabling the cre-
ation of AI-based images for speech-based cognitive assess-
ment. The framework allows the creation on-demand of images
that emulate the features of the CTP while adapting to the local
cultural context to elicit richer speech. Experiments show that
AI-generated images perform comparably to the Cookie Theft
Picture (CTP) in predicting HK-MoCA scores while providing
greater linguistic diversity. Prediction results also emphasize
the repeatability of the experience, with sequences of images
generated with HKGS yielding similar accuracy.

HKGS creates new opportunities for facilitating data col-
lection for speech-based cognitive assessment in environments
where participants are scarce, in low-resource languages and lo-
cations, and opens the possibility of more longitudinal studies.
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